Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1225-5009(Print)
ISSN : 2287-772X(Online)
Flower Research Journal Vol.28 No.2 pp.100-101
DOI : https://doi.org/10.11623/frj.2019.27.4.06

ERRATUM
An In Vitro Culture System for the Conservation and Production of Bioactive Compounds from Lilium dauricum

Jin-Ho Kim1,3, Thanh-Tam Ho1, Eun Bi Jang1, Seolah Kim2, Kang Hyuk Lee2, Song-Seok Shin2, and So-Young Park1
1Department of Horticulture, Division of Animal, Horticultural and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
2SK Bioland, 59, Songjeongri 2-gil, Cheonan, Chungnam, Republic of Korea
3Useful Plant Resources Center, Korea National Arboretum, Pocheon, Gyunggi-do 11186, Republic of Korea
*Corresponding author: Jin-Hee Lim Tel: +82-3408-4374 E-mail: jinheelim@sejong.ac.kr

Abstract

화훼연구지 27권 4호에 게재된 논문의 Abstract가 잘못 기재되어 있어 바로 잡습니다.

변경전(Before correction)
Lilium dauricum is a rare and endangered species belonging to the family Liliaceae. The species contains several bioactive compounds used as functional foods and medicinal agents in Northeast Asia. This study aimed (1) to establish an in vitro bulblet culture using an air-lift bioreactor and callus culture for the conservation of L. dauricum and obtaining its bioactive compounds; (2) investigate the plant phenolic compounds from both cultures system. The highest bulblet production with 12.5-fold increase in growth rate was obtained using MS medium supplemented with 0.5 g L-1 μM BA and 3% sucrose. Addition of 7% sucrose facilitated bulblet enlargement, with approximate 2.5- and 7-fold increases in diameter and fresh weight, respectively. The highest rate of callus (100%) was obtained using a combination of 1.0 mg L-1 picloram and 0.5 mg L-1 Kinetin. The callus proliferation occurred on MSurashige and Skoog medium supplemented with 1.0 mg L-1 picloram, 0.25 mg L-1 kinetin, and 0.25 g L-1 casein hydrolysate. There was a significant difference in the total phenolic compound content of callus, which was 1.5-fold higher than that in the bulblets. AbulbletsRegarding thestudy showed that the had mannerThese findings indicate a suitable system for optimizing both bulblet and callus culture of L. dauricum;, therefore, providing useful bio-materials for industrial purposes and contributing to the conservation of this.

변경후(After correction)
Lilium dauricum is a rare and endangered species belonging to the family Liliaceae. The species contains several bioactive compounds used as functional foods and medicinal agents in Northeast Asia. This study aimed (1) to establish an in vitro bulblet culture using an air-lift bioreactor and callus culture for the conservation of L. dauricum and obtaining its bioactive compounds; (2) investigate the plant phenolic compounds from both cultures system. The highest bulblet production with 12.5-fold increase in growth rate was obtained using MS medium supplemented with 0.5 g L-1 BA and 3% sucrose. Addition of 7% sucrose facilitated bulblet enlargement, with approximate 2.5- and 7-fold increases in diameter and fresh weight, respectively. The highest rate of callus (100%) was obtained using a combination of 1.0 mg L-1 picloram and 0.5 mg L-1 Kinetin. The callus proliferation occurred on MS medium supplemented with 1.0 mg L-1 picloram, 0.25 mg L-1 kinetin, and 0.25 g L-1 casein hydrolysate. There was a significant difference in the total phenolic compound content of callus, which was 1.5-fold higher than that in the bulblets. These findings indicate a suitable system for optimizing both bulblet and callus culture of L. dauricum, therefore, providing useful bio-materials for industrial purposes and contributing to the conservation of this species.

초록

화훼연구지 27권 4호에 게재된 논문의 Abstract가 잘못 기재되어 있어 바로 잡습니다.

변경전(Before correction)
Lilium dauricum is a rare and endangered species belonging to the family Liliaceae. The species contains several bioactive compounds used as functional foods and medicinal agents in Northeast Asia. This study aimed (1) to establish an in vitro bulblet culture using an air-lift bioreactor and callus culture for the conservation of L. dauricum and obtaining its bioactive compounds; (2) investigate the plant phenolic compounds from both cultures system. The highest bulblet production with 12.5-fold increase in growth rate was obtained using MS medium supplemented with 0.5 g L-1 μM BA and 3% sucrose. Addition of 7% sucrose facilitated bulblet enlargement, with approximate 2.5- and 7-fold increases in diameter and fresh weight, respectively. The highest rate of callus (100%) was obtained using a combination of 1.0 mg L-1 picloram and 0.5 mg L-1 Kinetin. The callus proliferation occurred on MSurashige and Skoog medium supplemented with 1.0 mg L-1 picloram, 0.25 mg L-1 kinetin, and 0.25 g L-1 casein hydrolysate. There was a significant difference in the total phenolic compound content of callus, which was 1.5-fold higher than that in the bulblets. AbulbletsRegarding thestudy showed that the had mannerThese findings indicate a suitable system for optimizing both bulblet and callus culture of L. dauricum;, therefore, providing useful bio-materials for industrial purposes and contributing to the conservation of this.

변경후(After correction)
Lilium dauricum is a rare and endangered species belonging to the family Liliaceae. The species contains several bioactive compounds used as functional foods and medicinal agents in Northeast Asia. This study aimed (1) to establish an in vitro bulblet culture using an air-lift bioreactor and callus culture for the conservation of L. dauricum and obtaining its bioactive compounds; (2) investigate the plant phenolic compounds from both cultures system. The highest bulblet production with 12.5-fold increase in growth rate was obtained using MS medium supplemented with 0.5 g L-1 BA and 3% sucrose. Addition of 7% sucrose facilitated bulblet enlargement, with approximate 2.5- and 7-fold increases in diameter and fresh weight, respectively. The highest rate of callus (100%) was obtained using a combination of 1.0 mg L-1 picloram and 0.5 mg L-1 Kinetin. The callus proliferation occurred on MS medium supplemented with 1.0 mg L-1 picloram, 0.25 mg L-1 kinetin, and 0.25 g L-1 casein hydrolysate. There was a significant difference in the total phenolic compound content of callus, which was 1.5-fold higher than that in the bulblets. These findings indicate a suitable system for optimizing both bulblet and callus culture of L. dauricum, therefore, providing useful bio-materials for industrial purposes and contributing to the conservation of this species.
 

Figure

Table